SPROG DCC

Pi-SPROG 3

DCC Decoder Programmer and Command Station for Raspberry Pi

User Guide

1

Revision History4
Introduction5
Requirements5
Features5
Specification/Operating Conditions6
Getting Started7
Install the Operating System7
Connect the Pi-SPROG 3 to your Raspberry Pi7
Connect the Raspberry Pi Power Supply8
Connect the Pi-SPROG 3 Power Supply8
Connect an Optional Track Activity LED9
Connect the Programming Track or Layout9
Connecting an Additional Booster9
Accessing the Raspberry Pi Desktop9
GPIO Pass-Through Connector10
The SPROG DCC Generation 5 Interface11
Getting Started with JMRI (DecoderPro and PanelPro)11
Setting the Connection Preferences12
Introduction to Service Mode Programming with DecoderPro 13
Getting Started with PanelPro20
Programming with PanelPro21
Turnout Tables21
Mapping from CBUS Event Numbers to DCC Accessory Address 23
Power Control
Panels23
JMRI Tools24
JMRI Throttles24

Connecting Throttle Devices to the Raspberry Pi Access Point	25
SPROG DCC Generation 5 Tools	25
Console	25
The Node Manager	26
NV1 Command Station Number	29
NV2 ZTC Mode	29
NV3 Blueline Mode	29
NV4 ACK Sensitivity	30
NV5 Command Station Mode	30
NV6 Track Current Limit	30
NV7 Input Voltage	30
NV8 Track Current	30
NV9 DCC Accessory Packet Repeat Count	30
NV10 Multimeter Mode	30
NV11 DCC Preamble Bits	30
NV12 User Flags	31
NV13 Operation Flags	31
The Command Station Monitor	32
Mode Switching	32
Track Current and Track Voltage	33
Pi-SPROG 3 Firmware Updates	33
The JMRI System console	36
Known Issues at time of writing	37
Troubleshooting	37
Useful Links	37

Revision History

Date	Version	Firmware	JMRI	Comment
Apr-20	Draft 0.2			First customer release
Apr-20	Draft 0.3	1b1	4.19.5	Updated product photographs
May-20	Draft 0.4	1b2	4.19.6	Corrected link to JMRI Tools
				Added detail for JMRI connection preferences
June-20	Draft 0.5	1b3	4.19.7	Mode switcher and other tools
July-20	Draft 0.6	1b5	4.19.9	Added NV 11
Feb-21	1.0	1c1	4.21.3	Common code with new NV layout
Sep-21	1.1	1c1	4.21.2	Remove ancient sourceforge link
Jul-22	1.2	1d1	5.1.2	Revert common NV layout
				Various fixes
Jan-23	1.3	1e3	5.2	See known issues list
Jan-23	1.4	N/A	N/A	Bootloader usage note

Firmware and JMRI columns refer to the earliest versions to which a User Guide version applies.

Introduction

Pi-SPROG 3 is a DCC decoder programmer and command station for connection to a raspberry Pi single board computer. Pi-SPROG 3 is supported by DecoderPro and PanelPro, both part of the JMRI project (<u>http://www.jmri.org/</u>).

Pi-SPROG 3 is a firmware upgrade for Pi-SPROG One hardware and has been superseded by the Pi-SPROG 3v2 on new hardware.

Pi-SPROG 3 can supply up to 2.5A to the layout with a track voltage of 12 – 18 V recommended.

The additional booster connector is no longer supported on current hardware.

Pi-SPROG 3 is based on same hardware as the orginal Pi-SPROG One with a completely re-written firmware. Pi-SPROG One owners should contact us for instructions on how to upgrade their firmware.

Requirements

- Raspberry Pi
 - R-Pi 3 model B+ or R-Pi 4 model B 2GB recommended
- Raspberry Pi power supply
- Operating system and software on SD card
- Regulated DC Power Supply for Pi-SPROG 3 (see Table 1)

Features

- Programs virtually **all** NMRA compliant DCC decoders
- No extra hardware required for programming sound decoders (e.g. QSI, Soundtraxx)
- Easy to use graphical interface with DecoderPro
- Solder pads for optional track power activity LED
- Supports WiThrottle and EngineDriver Android apps, e.g.
 - Pi 4 Model B using on-board WiFi
 - Pi 3 Model B/B+ using on-board WiFi
 - Pi 2 Model B with WiFi adapter
 - Pi 2 Model B via wired network connection to wireless router

Parameter	Minimum	Nominal	Maximum	Units	Note
DC Input supply	10V		20V	V	1
voltage					
Vin supply current –		50		mA	
not programming					
Vin supply current –		300		mA	2
programming					
Vin supply current –			2.6	А	3
Operating Layout					
Operating		25		°C	
Temperature Range					
Output Load –			250	mA	2
programming					
Output Load –			2.5	A	3
Operating Layout					

Specification/Operating Conditions

Table 1 Specification/Operating Conditions

Notes:

- 1. When programming, the minimum supply voltage depends upon the requirements of the decoder being programmed. In general it is safer to use as low a voltage as possible in case of problems with a newly installed decoder.
- 2. Pi-SPROG 3 will remove track power if output current exceeds 250mA as measured 100ms after applying power. Surge current during decoder power-up may be considerably greater than this, but is allowed for.
- 3. Depends upon required DCC current.
- 4. Pi-SPROG 3 is protected against reverse polarity connection of the power supply but will not work unless the polarity is correct.

Pi-SPROG 3 is *not* protected against track and power connections being interchanged, and damage may result.

Getting Started

The following steps are required to install Pi-SPROG 3 before you can use it for the first time:

Install the Operating System

Create an SD card image of the Raspberry Pi operating system and required software for your chosen application. Instructions for this are available from the SPROG DCC website download page:

SPROG DCC download page

You can follow the instructions to create your image, or purchase a preconfigured SD card from SPROG DCC.

It is strongly recommended that you make a backup of your SD card, using a tool such as <u>win32diskimager</u>

Connect the Pi-SPROG 3 to your Raspberry Pi

Always shutdown the Raspberry Pi and remove the power connection before connecting or disconnecting the Pi-SPROG 3.

The Pi-SPROG 3 should be plugged onto the 40 pin GPIO header, being careful to align the pins correctly. Using the plastic standoffs supplied with the Pi-SPROG 3 will ensure the correct alignment.

If you wish to remove the Pi-SPROG 3, do so carefully to avoid bending the connector pins on the Raspberry Pi.

Connect the Raspberry Pi Power Supply

Use a suitable power supply appropriate for your Raspberry Pi and any peripherals that may be attached and powered from the USB ports.

Connect the Pi-SPROG 3 Power Supply

Power supplies packaged with a Pi-SPROG 3 are already connected to the green pluggable terminal block.

For any other supply used (which must be a regulated DC power supply), connect as described below.

- Cut off the low voltage DC plug
- Separate the two conductors for about 3cm
- Strip 6-8mm of insulation from each conductor and twist the copper cores of each conductor together
- Insert the positive conductor into the +V terminal of the connector block and tighten the screw
- Insert the other conductor in the 0V terminal and tighten the screw

Pi-SPROG 3 is protected against reverse polarity connection of the power supply but will not work unless the polarity is correct.

Track Activity LED Connection

Pi-SPROG 3 is a firmware upgrade for Pi-SPROG One hardware, hence the "PiSPROG One v2" legend on the circuit board.

Connect an Optional Track Activity LED

You may connect an optional track activity LED (requires soldering) to the two holes shown in the annotated picture. A current limit resistor is included on the PCB suitable for a standard red LED. The LED anode should be connected to the square pad.

The LED will illuminate steadily when the DCC power is connected.

The LED will flash slowly hen the track power is turned on, quickly when an overload is detected.

The LED is not provided by default as we felt some users may wish to mount their Pi-SPROG 3 in an inaccessible location and mount a remote LED on a front panel.

Connect the Programming Track or Layout

When using Pi-SPROG 3 as a programmer, the programming track MUST be isolated from all other DC or DCC control systems and connected only to the Pi-SPROG 3. Damage may result to the Pi-SPROG 3 or other equipment if this rule is not followed.

Connect the Pi-SPROG 3 to the programming track using the Trk A and Trk B terminals of the pluggable terminal block. There is no requirement to observe any particular polarity when connecting the programming track. The DCC output voltage will be approximately 1V below the power supply voltage, typically about 11V with the standard power supply provided..

During programming the track current is sensed 100 milliseconds after the programming track is powered up. If the current exceeds 250 milliAmps then the programming track power is removed to avoid potential damage to an incorrectly installed decoder.

Connecting an Additional Booster

The low power booster connection is not currently available. Some boosters can, however, be connected directly to the track output.

Accessing the Raspberry Pi Desktop

We recommend using remote access software from a host PC or other suitable device. SPROG DCC software images are pre-configured to disable the default desktop and run VNC server.

We recommend VNC viewer, or similar, on your PC. The server name for a

SPROG DCC SD card is sprog-pi3 (pre 2020-02-13 SD card) or sprog-pi4 (2020-02-13 SD card or later). If you created your own SD card then use hostname that you chose in the Raspberry Pi configuration.

V2 VNC Viewer	- 🗆 X
VNC® Viewer	V 2
VNC Server: sprog-pi4.local	~
Encryption: Let VNC Server choose	~
<u>A</u> bout <u>O</u> ptions	Connect

If the server name is not resolved you will need to determine the IP address of the Raspberry Pi that is assigned by your router and connect to that IP address in VNC viewer.

The default vnc username and password for SPROG DCC software images are 'pi' and 'raspberry', respectively

For wireless connection you must first connect to the access point using the wireless setup on your PC, just as you would to connect to a wireless router. The default IP address to connect to the SPROG DCC images is 192.168.6.1

If you prefer not to use remote access you can attach an LCD screen or HDMI monitor, along with a USB keyboard and mouse. You can log in to the Raspberry Pi and then start the desktop by running 'startx'.

You can run 'raspi-config' to enable the desktop automatically at login.

Using a screen directly attached to the Raspberry Pi will display the default desktop :0 and you may not see the DecoderPro GUI that • may have launched on desktop :1 when the Raspberry Pi booted, depending on the system configuration.

You may need to do further configuration to force DecoderPro to start on the default desktop.

GPIO Pass-Through Connector

The Pi-SPROG 3 passes all Raspberry Pi GPIO pins through to a 40-pin header that allows further accessory boards ("hats") to be connected. There are, however, some restrictions on using these pins.

The UART Rx and Tx pins (pins 8 and 10) are used by the Pi-SPROG 3. No further connection should be made to these pins.

The SPI pins (pins 19, 21, 23 and 24) are connected on the Pi-SPROG 3 and reserved for possible future use. In the meantime, with the current firmware, they are connected to digital inputs and may safely be used.

The SPROG DCC Generation 5 Interface

The Pi-SPROG 3 is the first of the SPROG Generation 5 products. The interface between the host (Raspberry Pi in this case) and the Pi-SPROG 3 is based on a protocol called CBUS, develop by members of MERG. The Pi-SPROG 3 does not allow connection to a physical CBUS network and most users will not, initially at least, need to worry about the underlying operation of CBUS.

A subset of CBUS tools within in JMRI are supported by the Pi-SPROG 3 and these are described in the section JMRI Tools

Getting Started with JMRI (DecoderPro and PanelPro)

DecoderPro and PanelPro are different interface to the same underlying JMRI software. The split exists for historical reasons only. There are some differences in the functions that are available from the menus but a lot of features are available through both interfaces.

It has become customary to think of DecoderPro as the tool for programming decoders and PanelPro for controlling a layout.

DecoderPro will often be used with a dedicated programming track for 'service mode' programming. This allows full read and write access to all Configuration Variables (CVs) in a *single* decoder.

PanelPro will often be used with 'on the main' or 'ops mode' programming in conjunction with layout control. In this mode CVs may be written, but (without special hardware such as Railcom) values cannot be read back. The Pi-SPROG 3 does not support reading from decoder in ops mode. The advantage of ops mode programming is that a single loco out of all the locos on a layout me be programmed. Unlike service mode there is no single loco limit.

We will use that distinction (DecoderPro for service mode programming and PanelPro for ops mode programming) in discussing the use of the Pi-SPROG 3.

Despite this, the current Pi-SPROG 3 firmware, unlike earlier SPROG DCC products, makes little distinction between programming and operating.

Care should be taken when using the service mode programmer that only one loco is on the layout during programming, or that the layout
is isolated except for a short section of track for programming. If a programming operation is performed whilst the whole layout is connected, then incorrect data may be read from CVs and all locos on the layout will be re-programmed with unpredictable results.

See the later section on the Mode Switcher tool for more information on using the Pi-SPROG 3 as a programmer or command station.

See the JMRI website <u>https://www.jmri.org/</u> for any updates and latest information about JMRI.

Join the JMRI users group <u>https://groups.io/g/jmriusers/topics</u> for help from other JMRI users and the team who develop it.

Setting the Connection Preferences

If you have created your OS image following our instructions, or purchased it from us on SD card then you can use the desktop icons to start DecoderPro or PanelPro.

If creating your own system then please be sure to select SPROG DCC Generation 5 as the System Manufacturer and Pi-SPROG 3 as the System Connection in the connection preferences for DecoderPro or PanelPro. Our images are configured to use the ttyAMA0 serial port, rather than ttyS0.

	Preferences		
Window Help			
Window Help Connections Defaults File Locations Start Up Display Messages Roster Throttle WiThrottle Config Profiles Web Server Consist Control	SPROG DCC Generation 5 System manufacturer SPROG DCC Generation 5 System connection Pi-SPROG 3 Settings		_
LocoNet over TCP S JSON Server Railroad Name SRCP Server Simple Server Warrants	Serial port: ttyAMA0 Connection Prefix: S Connection Name: SPROG DCC Generation 5 Additional Connection Settings		

Introduction to Service Mode Programming with DecoderPro

Start DecoderPro from the desktop icon or from a command line in a terminal window. The main window will open and show the current connection method. This merely reflects the preferences setting and does not actually indicate a physical connection.

To add a new loco to the roster, click 'New Loco'.

Create New Loco 🛛 🗸 🔺	×
File Roster	
Programming Mode Direct Bit 💌	
Decoder installed:	
🕈 🗂 NMRA	-
🕶 🗂 ANE Model Co, Ltd	
🕶 🗂 Arnold - Rivarossi	
🗠 🚍 Atlas	_
👇 🗂 Broadway Limited Imports, LLC	
🗠 🗂 Bachmann Trains	
🗠 🚍 CML Systems	
🗠 🗂 CT Elektronik	
← 🗂 CVP Products	
← 📑 DCCconcepts	
🕶 🗂 Digirails	
🕶 🗂 Digitrax	
🗠 🚍 Doehler und Haass	
👇 🗂 Electronic Solutions Ulm GmbH	
🗠 🚍 Fleischmann	
👇 🚍 Fucik	
🗠 🗂 GFB Designs	
👇 🗂 Gaugemaster	
👇 🗂 Haber and Koenig Electronics GmbH	
🔶 🚍 Harman DCC	•
Read type from deco All Matched Onl	y
Open Comprehensive Programme	-

idle

Clicking the control or double clicking the folder icon next to a manufacturer name will open a list of decoder types from that manufacturer. You can always manually select a decoder type in this way. In most cases, DecoderPro can determine the manufacturer and decoder type automatically.

Place a decoder equipped loco on the programming track and click on 'Read type from decoder'.

In the example below, DecoderPro has identified a QSI Industries BLI F7.

Sometimes DecoderPro can identify the manufacturer but not exact model of decoder fitted. This is because the vendors often use the same ID version for multiple similar decoders. Often the difference is in a physical fit, e.g., a different number of function outputs available, or for the physical fit, e.g., an SD60 having a different shape from an AC44, or for a set of specific sounds for a different railroad; these do not affect the programming, and so they use a common number for that whole series of models. In these cases it will be

necessary to select the decoder type manually, often from several highlighted possibilities.

Wait for all programming operations to complete. There is an issue in JMRI, at the time of writing, that the status shows 'idle' and the 'Open Comprehensive Programmer' button becomes available before all programming operations have completed. You will often see small movements or hear the loco motor ticking during programming as a clue.

	Create New Loco	~ ^	×
File Roster			
Program	mming Mode Direct Bit 💌		
Decoder installed:	Create Basic Roster Entry		
Atlas MP-15DC	Roster ID <new loco=""></new>		
- 🗋 Atlas SD24/26			
- 🗋 Atlas SD35 P3 horn			
- 🗋 Atlas SD35 H4710 whistle			
- 🗋 Atlas TM w/Mars			
- 🗋 Atlas TM wo/Mars			
- 🗋 Atlas U30B w/Mars			
- 🗋 Atlas U30B	Short (one byte) address		
- 🗋 Atlas U30C	Long (two byte) address		
- 🗋 BLI AC6000	Active Address:		
- 🗋 BLI C30-7	997		
- 🗋 BLI E3/E6 w/Mars			
– 🗋 BLI E3/E6 wo/Mars	Analog (DC) Operation DC conversion (enabled	-
- 🗋 BLI E7 w/Mars			
- 🗋 BLI E7 wo/Mars			
- 🗋 BLI E8/E9 w/Mars			
- 🗋 BLI E8/E9 wo/Mars			
- 🗋 BLI F7	▼		
Read type from deco All Ma	atched Only Re Wr Save		
	Open Comprehensive Pro	ogramm	er
idle			

Once the decoder type has been selected, click "Open Comprehensive Programmer".

The service mode programmer window opens with a selection of "tabs", grouped in rows below the menu bar (see below), Clicking on a tab selects a group of CVs to be programmed, related to the title of the tab. The selection of tabs available will vary depending upon the features supported by your decoder and the CVs available.

Program <r< th=""><th>new loco> in Service Mode (Programming Track) 🔹 🔹 🗙</th></r<>	new loco> in Service Mode (Programming Track) 🔹 🔹 🗙
File Reset Window Help	
Volume Function Output Light Control	Multi Auto Lights BEMF QSI Misc.
Analog Controls Consist	Advanced Sound Sound Levels CVs Sound Control
Roster Entry Basic Motor	Basic Speed Control Speed Table Function Map Lights
ID:	<new loco=""></new>
Road Name:	
Road Number:	
Manufacturer:	
Owner:	pi
Model:	
DCC Address:	3 DCC Short 👻
Throttle Speed Limit:	
Comment:	
Decoder Family:	OSI Diesel Ver. 7
Decoder Model:	BLI F7
Decoder Comment:	
Date Modified:	
	Save to Roster Reset to defaults
Read changes on all sh	Write changes on all sh Read all she Write all she
	Programming Mode Direct Bit
	idle

On the "Roster Entry" tab you may enter arbitrary details of the loco to be saved for future reference. You need to enter a unique name in the top box (initially marked <new loco>) as this will be the name of a file in the Roster with all the settings for this loco. The road number is often a good choice.

Everything else on this pane is optional, and for your convenience. The DCC address field will be filled in by DecoderPro once the decoder has been read or programmed. If you wish to use the Roster then you should make sure to click "Save" on the Roster Entry tab when you have finished programming the decoder. The Roster is especially useful if the decoder loses its settings as seems to happen occasionally with some decoders. Alternatively, you may wish to program a second loco with similar CV settings, move the settings to another computer or make a backup.

Note on 'ID:' When you click Save, the ID will become the file name of the roster entry created for this loco, and also the entry in the list for you to be able to select a previously-programmed and saved loco in future, by using the **Ident** button.. Name these entries wisely! Many people use the loco type and number, or Operator/road name and number, but choose a system that will be meaningful to you.

16

Click on the "Basic" tab and you will see the most essential settings for the decoder including the address. Initially, all of the data fields are coloured red or yellow to show that no data has been read from or written to the decoder. There are eight read and write buttons at the bottom of the window. Click "Read full sheet" to read the data for the current tab from the decoder. That will read CVs 1, 29, 17, 18, 19, 7, 8, 105 and 106 and fill in these values from the loco.

Clicking "Read all sheets" will read every CV from the decoder and
 may take a considerable time to complete. We recommend reading , and reviewing each sheet individually, as required.

		Program	<new loco=""> in</new>	Service Mode	(Programming Ti	rack)	~ ^ X
File Reset	Window Help						
Volume	Function Outpu	t Light Contr	ol 🛛 Multi Auto	Lights BEM	F QSI Misc.		
Analog	Controls	Consist	Advanced	Sound	Sound Levels	CVs Soun	d Control
Roster E	intry Basi	C Motor	Basic Spee	ed Control	Speed Table	Function Map	Lights
Le	Primary Addr Strended Addr Address Forr Speed St Source Converse Bead char	Short (one byte Long (two byte ive Address: ess 3 ess 0 nat Short (one cion normal eps 28/128 spe sion DC convers	e) address) address byte) address ed step format(sion enabled v	▼ recommended) - Read full sh	Manufacturer ID Manufacturer Version No Product Model Write full sh	113 0 0
	Read chai	iges on sn	write chang	es on sn	Read full sn	write full sn	
	Read change	s on all sh	Write chang	ges on all sh…	Read all sh	e Write all she	
			Programmi	ng Mode Direct	Bit 💌		

Each data field should return to white or the background colour of the window.

Check that you see what you expected, especially if you are reading a decoder that was already programmed elsewhere!

The exact look and layout of these programming panes may vary as versions of DecoderPro or the specific decoder types are updated, but the essential information and capabilities remain consistent.

To change the locos address, type a new address in the Active Address field followed by carriage return. The address field will turn orange, indicating that the address has been changed but not yet written to the decoder. Select the type of address to be set (short or extended).

⊖ She	ort (one byte) address
🕨 🔍 Lor	ıg (two byte) address
Active	Address:
55	
Primary Address Extended Address Address Format	s 3 s 55 t Long (two byte) address 🔻

Click "Write changes on sheet" to write the new address to the decoder. The address will turn red and then white as it is written to the decoder. You can set other basic properties such as the direction and DC operation on this tab.

To Save your data to the Roster record on your computer select the Roster Entry pane where there is a "Save to Roster" button.

The other tabs work in a very similar way. You may find it useful to have the decoder documentation available when setting more complex or manufacturer specific features.

Next we'll look at the Speed Control tab that allows you to fine tune the way the loco responds to the throttle. Click on the "Speed Control" tab.

The decoder in this example has a choice to "Use QSI table or User table in CVs 67 through 94". The "look and feel" of this tab will vary between decoders but most recent decoders support the use of a speed table.

It is left as an exercise for the reader to experiment with the sliders for setting the speed table and the buttons just below. The "Force Straight" option will give a linear relationship between the throttle position and the speed of the loco. "Constant ratio curve" will give little change in speed at low throttle settings, greater change at higher throttle.

Remember to write the changes on each sheet before moving to a new one.

Next, click on the "Function Map" tab.

The Function Map allows you (in those decoders that support it) to control which throttle function key is mapped to each output wire or operation (e.g. sound effect) of the decoder.

Program <new loco=""> in Service Mode (Programming Track) 🔹 🔹 🔹</new>						
File Reset Window Help						
Sound Sound Levels CVs Sound Control Volume Function Output Light Control Multi Auto Lights BEMF QSI Misc.						
Roster Entry Basic Motor Basic Speed Control Speed Table Function Map Lights Analog Controls Consist Advanced						
Use this sheet to determine which functions will control which outputsDescriptionOutput wire or operationIIIIIIIIIForward Headlight F0(f)VVIIIIIIIIIIIIIIIIIIIIIIIForward Headlight F0(f) <th colspan="6" t<="" td="" v<=""></th>						
Read changes on sh Write changes on sh Read full sh Write full sh						
Read changes on all sh Write changes on all sh Read all she Write all she						
Programming Mode Direct Bit 💌						
ок						

DecoderPro comes into its own for programming the many and varied options in a sound decoder. Here is an example Sound tab from the BLI F7 where the volume of individual effects may be set.

Note that it os not possible to program new sound effects or sound projects with the Pi-SPROG 3. There is no agreed standard for this, and each sound

decoder manufacturer has their own proprietary system.

Again, remember to write your changes.

Hovering over an item with the cursor will often show a short description for that item, but it is highly recommended that you read the documentation for your decoder to get the best from it with DecoderPro.

Getting Started with PanelPro

Start PanelPro from the desktop icon or from a command line in a terminal window. The main window will open and show the current connection method. This merely reflects the preferences setting and does not actually indicate a physical connection.

Only a very brief introduction to a few key concepts is included here. Please consult the on-line help or ask in the user group for further information.

20

Programming with PanelPro

More info TBD

Tools > Programmers > Ops Mode Programmer Operation...mer Setup ~ ^ × Roster

	Use existing	roster entry:			
	All Entries 💌	Locomotive 💌			
Programmer format: Tutorial ▼					
		Open Programmer			

Other programmers tools are also proavailable in Panelpro, but not covered in this introduction.

Turnout Tables

More info TBD. Tools > Tables > Turnouts 21

N			Turnouts			~	~ X
File View Automat	ion Speeds W	indow Help					
Turnouts	All SPROG D	OCC Generation 5 Inter	nal				
Sensors	System Name	User Name 🔺	State	Comment	Inverted	Locked	
Signal Heads			,		,		
Signal Masts							
Signal Groups							
Signal Mast Logic							
Reporters							
Routes							
LRoutes							
Logix							
Blocks							
Sections							
Audio V							
	Add	Automatic retry	Show Feedback in	nformation S	how Lock informat	ion 📘	Show

Click Add.

Enter the accessory address, a name and click 'Create'.

Add New Turnout						×
Window Help						
System Connection: Hardware Address:	SPROG DCC Generation 5 33	 Add a sequential range Number of items: 				1÷
User Name:	Yard Throat					
	SPROG DCC Generation 5 Turno	uts use one of these patterns:	Close	Cre	ate	•

The new turnout is added to the table.

			Turnouts						×
File View	Automation 9	Speeds Window Help							
Turnout 🔺	All SPROG	DCC Generation 5 Intern	ial						
Sensors	System Name	User Name 🔺	State	Comment		Inverted	Locked		
Signal F	ST+33	Yard Throat	Unknown					Edit	
Signal N		1							
Signal C									
Reporte									
Memory									
Routes									
LRoutes									
Blocks									
Section									
Transits									
<pre> 4 + </pre>	Add	Automatic retry	Show Feedback in	nformation S	how L	ock informa	tion	Show T	urn

The edit button can be used to correct mistakes. Right clicking the edit button opens a context menu with other options.

Advanced Topic: Under the hood, the CBUS protocol is used to communicate between JMRI and the Pi-SPROG 3. The turnout name ST+33 actually sends a CBUS accessory ASON event 33 to the PI-SPROG 3. The Pi-SPROG 3 converts all CBUS accessory events to DCC accessory addresses (see below).

Mapping from CBUS Event Numbers to DCC Accessory Address

JMRI turnout numbers for CBUS, and hence the associated CBUS events, start from 1 whereas DCC accessory addresses start from 0.

CBUS turnouts are mapped to DCC accessory addresses by subtracting one from the Event Number in the Pi-SPROG 3.

E.g., ST+33 (SPROG Turnout 33) will send DCC on command to accessory address 32.

Consideration must also be given to the way in which various manufacturers have chosen to interpret DCC accessory addresses. The mapped CBUS event may not correspond directly to a DCC accessory address recognised by a DCC accessory decoder that has been programmed on a different DCC system.

Power Control

Tools > Power Control

Pool	~ ^ X
Connection Wind	dow Help
Layout power:	On
On	Off

Can be used to control layout power. Changes of the layout power state will be reflected in all tools that have a power control such as the power control tool, throttles, command station monitor.

Panels

TBD

JMRI Tools

JMRI Throttles

Throttles work much as they do for any system connected to JMRI. A new throttle can be opened from the Actions > New throttle menu item in DecoderPro or the Tools > Throttles > New Throttle in PanelPro.

Enter the DCC loco address and click Set. This will enable the function buttons and speed control slider.

	997(L) 🗸 🗙 🗙						
File	e Edit Viev	v Power V	Vindow Help				
	÷ –				On	P	
	🖻 🖂	Functio	n Panel		- ×		
	-100%	F1	F2	F3			
		F4	F5	F6			
		F7	F8	F9			
	- 50%	F10	F11	F12			
		F13	F14	F15			
		*	Light	#			
l d	Stop						
	Forward	Address	s Panel		* 🛛		
	Reverse	997	DCC	Long 👻	Set		
1	28 55 👻	All Entrie	es 💌 <no lo<="" th=""><th>co Selected ></th><th></th><th></th><th></th></no>	co Selected >			
	STOP!						
	Idle	Dispatc	h Releas	e Progr	am		

Use the power control icon to control layout power (not individual locos). It must be clicked until it is green to turn on track power. If you have fitted the optional track power LED to your Pi-SPROG 3 it will flash when the track power is on.

Note: After programming using the service mode programmer, the track power is always left in the off state and must be turned on again from the throttle power control before the loco can be run.

The function keys mostly have a latching operation. Click once to turn a function on, click again to turn the function off. Right click on a function

1.4 January 2023

button and click 'properties' to change this behavior.

To control the loco speed, click and drag the slider caret (the pointy bit!). For fine control of speed, click on the slider just above or below the caret.

The "STOP!" button will stop the loco but does not turn off the track power.

To set a different loco address, click the "Dispatch" or "Release" button.

Connecting Throttle Devices to the Raspberry Pi Access Point

If you are using an SD card purchased from SPROG DCC, or have followed our instructions to create one and have a Raspberry Pi with built in WiFi, then you can connect a throttle with an app such as WiThrottle or EngineDriver.

The default WiFi password is 'pi-sprog', unless you changed it during or after creating the SD card image.

SPROG DCC Generation 5 Tools

A number of tools are available on the SPROG DCC Generation 5 menu

		DecoderPro
<u>File Edit Settings Actions</u>	SPROG DCC Generation 5	Window Help
🕂 New Loco 🔍 Ident	Console CBUS Send Event Frame Node Manager	nknown
ID DCC Address ▲ Icon 55 3 Lo	Command Station Monitor Firmware Update Mode Switcher	Road Nui
	Voltage / Current meter	

These are described in more detail in the following sections.

Console

The console shows the traffic between the Pi-SPROG 3 and the host Raspberry Pi. It is useful for capturing diagnostic information if a problem

1.4 January 2023

occurs that is repeatable. It is not required for normal, everyday, operation.

The Node Manager

The node Manager allows access to internal settings in the Pi-SPROG 3. It is not required for normal, everyday, operation, unless you need to change a mode that used to be set in the SPROG mode word in earlier versions.

The node manager is started from the SPROG DCC Generation 5 > Node Manager menu item.

Select the option 'Add Command Stations when found' and 'Add Nodes when found' in the Options menu.

Click 'Search for Nodes and Command Stations' in the Options menu

The Pi-SPROG 3 should respond as a Command Station

Click OK.

In the Node Info tab you can see details such as the firmware version of the Pi-SPROG 3

Node Info	Node Comments	Node Variables	Node Events	Node Se
	SPF	ROG DCC Pi-SPRC	OG 3 https://v	vww.spro
Node Numbe Manufacture Identified as Firmware ver Node Variab	er : 65534 er: 44 (SPROG DCC) Typ : Pi-SPROG 3 Pi-SPROC : 1d Beta 1 les : 13	oe: 1 G 3 programmer/com	mand station.	

The Node Variables (NVs) control the operation and show the internal status of the Pi-SPROG 3, much like the CVs in a DCC decoder.

The Node Variables Generic tab displays raw NV values that can be edited with care.

Node Info	Node Comments	Node Variables	Node Events	Node Setup	Node Backups
			Save	Reset	
Generic E	dit Template				
N∨	Name	Dec.	Hex.	Bin.	New Dec.
1	Setup Mode	0	00	0000 0000	0
2	ZTC Mode	0	00	0000 0000	0
3	Blueline mode	0	00	0000 0000	0
4	ACK sensitivity	0	00	0000 0000	0 🔺
5	Command Stati	0	00	0000 0000	0 📫
6	Current limit	249	F9	1111 1001	249 🛓
7	Input voltage (r	255	FF	1111 1111	255 🛓
8	Track current (r	255	FF	1111 1111	255 🔺
9	Accessory pack	1	01	0000 0001	1 🔺
10	Multimeter mode	0	00	0000 0000	0 🔺
11	DCC preamble b	14	0E	0000 1110	14 🔺
12	User flags	54	36	0011 0110	54 🛓
13	Operations flags	0	00	0000 0000	0

To change an NV use the spinner to select the new value, or type the new value directly, click the save button and then confirm the operation in the pop up dialog.

The Node Variables Edit tab displays a more user friendly editing GUI for the NV values. This sub-divided into Command Station, DCC and Diagnostics.

Use the GUI elements to change the Pi-SPROG 3 behaviour, click the save button and then confirm the operation in the pop up dialog.

Accessory Packe	t Repea	at Count
		1-
Number of DCC p	acket p	reamble bits to send
-	-	14-

DCC	CBUS Diagnostics
Setu	Mode
	Setu

Node	Values	Default	Function
Variable			
1	0,1	0	Setup mode – do not use
2	0,1	0	Set to 1 for compatibility with ZTC decoders
3	0,1	0	Set to 1 for Broadway Limited decoders
4	0,1	0	Set to 1 for Zimo large scale decoders
5	0,1	0	Programmer/Command station mode – use the Mode Switcher tool
6	0 – 255	249	Track current limit in mA/10. E.g. default is 2490 mA or 2.49 A. This must always be lower than the power supply current limit.
7	0 – 255	-	Read only input voltage in Vx10, e.g. 118 represents 11.8 V
8	0 – 255	-	Read only track current in mA/10
9	1 – 7	1	Accessory packet repeat count.
10	0,1	0	Multimeter mode. Set to 1 to enable voltage and current reporting.
11	14 – 255	14	Number of pre-amble bits sent between packets
12	0 – 255	54	User flags
13	0 - 255	0	Operations flags

NV1 Command Station Number

Only command station 0 is currently supported. Any other values will be ignored.

NV2 ZTC Mode

Set to to allow compatibility when programming ZTC decoders.

NV3 Blueline Mode

Set to 1 to modify programming operation to suit blueline decoders.

29

NV4 ACK Sensitivity

Set to 1 to modify programming ACK pulse detection for certain large scale Zimo decoders.

NV5 Command Station Mode

The way the programming track works is controlled by Node Variable 5 and can have one of three values

NV5	Mode		
0	Programmer Mode		
	Programming operations will use service mode.		
1	Command Station Mode		
	Programming operations will use "ops mode" or "on the main".		

NV6 Track Current Limit

Current trip limits to be applied to the two track outputs in Amps x 10, e.g., a value of 20 will apply a current limit of 2.0A.

NV7 Input Voltage

Measured input supply voltage in Volts x 10, e.g., 125 represents 12.5V.

NV8 Track Current

NV9 DCC Accessory Packet Repeat Count

Range 1 – 7.

The number of times a DCC accessory packet is repeated. If DCC accessories do not operate reliably, try increasing the repeat count by 1.

NV10 Multimeter Mode

- 0 Multimeter events disabled
- 1 Multimeter current/voltage measurement events enabled

NV11 DCC Preamble Bits

The number of preamble bits sent before each DCC packet.

NV12 User Flags

The user flags NV contains 8 bits.

The default value is 01110110 or hex 76 or decimal 118.

Reserved bits should always be set to 0 and will read as zero.

Bit	Default	Function
0	0	Reserved
1	1	Permit Steal: Set to enable steal option
2	1	Permit Share: Set to permit share option
3	0	Reserved
4	1	Reserved
5	1	Stop on Timeout: If set and a loco session times out, the train is brought to a stop. If clear the train is dispatched whilst moving
6	1	Reserved
7	0	Auto Power: Set to turn track power on at startup

NV13 Operation Flags

The operation flags NV contains 8 bits.

The default value is 0.

Reserved bits should always be set to 0 and will read as zero.

Bit	Default	Function
0	0	Reserved
1	0	Reserved
2	0	Reserved
3	0	Reserved
4	0	All stop track off: Set to turn track power off if an all stop command is issued
5	0	Reserved

6	0	Reserved
7	0	Reserved

Voltage and current measurements are for information only and accurate to +/-5%.

The Command Station Monitor

When using the Pi-SPROG 3 as a command station controlling multiple locos, you can see the status of all locos in the command station monitor.

Emergency top and power control buttons are also provided in the command station monitor window.

SPROG DCC Generatiommand Station Monitor 👻 🔺 🗙				
Session Columns Window Help				
Stop Al	I 🕐 On			
Session	Loco ID	E Stop	Speed	Direction
1	997		53	Forwards
2	56		25	Reverse
•				•

Mode Switching

Like previous SPROG DCC products, the Pi-SPROG 3 can be used in "programmer" or "command station". Unlike earlier products, this is not done through the JMRI connection reference, but by switching the mode of the Pi-SPROG 3. Thus, there is no requirement to quit and restart JMRI to change modes between programmer and command station.

In Programmer mode the Pi-SPROG 3 supports service mode programming on a programming track with full read and write access to CVs.

In Command Station mode the Pi-SPROG 3 support ops mode programming on the layout with write only to CVs.

The mode can be changed by directly editing NV5, using th drop-down in the Command Station edit GUI or using the mode switcher tool.

In the mode switcher tool, two radio buttons allow selection of Programmer or Command Station mode.

The status bar of the DecoderPro window will be updated to show which programmer modes are available or "on-line".

The mode is set in the Pi-SPROG 3 and also saved as a JMRI preference so that it will be re-instated if the hardware or software are restarted. If the Pi-SPROG 3 is used on a different system, reprogrammed with the bootloader or the JMRI preferences are lost then it is possible that the modes can become out of step. In that case simply use the tool to set the desired mode.

Track Current and Track Voltage

If Node Variable 10, Multimeter Mode, is set to 1, or the Multimeter Enable button is selected then the Pi-SPROG 3 will send regular voltage and current measurements. These may be displayed in the Voltage/Current meter tool.

Pi-SPROG 3 Firmware Updates

If you have older Pi-SPROG One hardware running Pi-SPROG One firmware, do not attempt to use the firmware update process. Contact us for more details.

Pi-SPROG 3 firmware updates are performed using the Firmware Update tool

```
1.4 January 2023
```

in JMRI.

Firmware upgrade files (.hex files) will be available from SPROG DCC when an update is available.

Start the Firmware Update Tool from the SPROG DCC Generation 5 menu in JMRI.

If you are updating from a firmware version older than 1.e.1, select the "Ignore Parameters" option.

Enter the Node Number (Pi-SPROG 3 has a fixed node number of 65534) and click Read Node Parameters

SPROG DCC GeneratioBUS Firmware Update 🐱 🔺 🗙				
Options Window Help				
Node Number Modu	le Check	Memory Options		
65534 Ign	ore Parameters	Config EEPROM		
Read Node Parameters	Choose File	Start Programming		
Bootloader console				

When the node parameters have finished reading, clock Choose file, browse to wherever you saved the pisprog3 hex file and click Open

	Open		~ ^ X
Look In: 📑 D	esktop	• A A	
DecoderPro PanelPro.d pisprog3_v pisprogone	o.desktop esktop 1_0_1.X.production.unified.hex _lowloacker.X.production.hex t.py		
File <u>N</u> ame:	pisprogone_lowloader.X.production.hex		
Files of <u>Type</u> :	All Files		-
		Open	Cancel

Click Start Programming.

	SPROG DCC CBUS Firmware Update		
Options Window	Help		
Node Number	65534	Memory Options	
	Read Node Parameters Choose File Start Programmi	ing	
Bootloader console	e		
Reading node parameters Finished reading node parameters jmri.jmrix.can.cbus.swing.bootloader.CbusParameters@13450aa File chosen: /home/pi/Desktop/pisprog3_v1_0_1.X.production.unified.hex Found parameters in hex file jmri.jmrix.can.cbus.swing.bootloader.CbusParameters@53f3a8 File parameter match hardware parameters jmri.jmrix.can.cbus.swing.bootloader.CbusParameters@13450aa Hex file will overwrite bootloader			

The new CBUS bootloader and the Pi-SPROG 3 application will be written to the Pi-SPROG hardware.

Wait for programming to complete (takes a little while).

SPROG DCC GeneratioBUS Firmware Update 🐱 🔺 🗙				
Options Window Help				
Node Number	Iodule Check	Memory Options		
65534	Ignore Parameters	Config EEPROM		
Read Node Paramete	rs Choose File	Start Programming		
Bootloader console Write at address 3cou Write at address 3do0 Write at address 3fo0 Write at address 3fo0 Skipping to address 20000 Write at address 200000 Skipping to address 30000 Skipping to address f0000 Verifying checksum Bootloading complete. Res Boot status is COMPLETE	00 00 setting node			
•	III	•		

Firmware Update window will show the completion message

The JMRI System console

The JMRI system console can be opened from the Help > System console menu item.

The system console contents may be useful when something goes wrong. Look for ERROR or WARNING messages.

Known Issues at time of writing

The Pi-SPROG 3 does not support DCC functions above F28.

JMRI Null Pointer Exception when newer versions of JMRI are used with older firmware prior to 1.e.1. Fix: Update firmware to 1.e.1 or later

RDCC commands do not send correct packets. Fix: Update firmware to 1.e.2

Multimeters display incorrect voltage since firmware 1.d.1. Fix: Update firmware to 1.e.3 or later

Troubleshooting

Before reporting any problems please check the SPROG DCC website for any bug reports or updates.

If you are experiencing intermittent faults with your Pi-SPROG 3, please ensure that you are using a good quality DC, regulated power supply.

Useful Links

SPROG homepage <u>https://www.sprog-dcc.co.uk</u> for the latest information, updates, downloads, etc., for Pi-SPROG 3.

North American distributor for Pi-SPROG 3 http://www.bbmgroup.com/sprog

SPROG DCC discussion group <u>https://groups.io/g/sprog-dcc</u> for latest news and discussion.

Java Model railroad Interface <u>https://www.jmri.org/</u> for DecoderPro.

JMRI users group <u>https://groups.io/g/jmriusers/topics</u> for latest news and discussion.

Model Electronics Railway Group https://www.merg.org.uk/

Raspberry Pi Forums <u>https://www.raspberrypi.org/forums/</u> You will find far more knowledge here, than we are able to offer!